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Modulational instability of dust-acoustic and dust-ion-acoustic waves
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Using the standard reductive perturbation technique, a nonlinear@cbes equation is derived to study the
modulational instability of finite amplitude dust-acoustldA) and dust-ion-acousti¢€DIA) waves against
oblique perturbationéwith respect to the propagation direction of the carrier wairean unmagnetized dusty
plasma. It is shown that both the DA and DIA waves are modulationally unstable. Possible stationary states of
the wave packets can appear as envelope solif®i€63-651X98)06111-X]

PACS numbsgs): 52.25.Vy, 52.35.Fp, 52.35.Qz, 52.35.Mw

I. INTRODUCTION tremely massive micrometer-size charged dust grains. In the
DAW potential, both the electrons and ions are Boltzmann

In recent years, nonlinear wave propagation in plasmadistributed, whereas the charged dust particles are inertial.
has become one of the most important subjects of plasmahus, in the DAW, the pressures of the electrons and ions
physics[1-6]. In particular, it is now well established that provide the restoring force, whereas the inertia comes from
the slow modulation of a monochromatic plane wave can béhe dust mass. The phase velocity of the DAW scales as
described by the so-called nonlinear Sainger equation @pg\p=Cq, Wherew,q is the dust-plasma frequencyyp, is
(NLSE), which is familiar as the resultant equation of thethe effective Debye length of the dusty plasmey
reductive perturbation theorygRPT) developed by Taniuti = (KgTe/mg)*?is the DA velocity kg is the Boltzmann con-
and his collaborator$3,4]. For a medium with a positive stant,T is the electron temperature, antg is the mass of a
coefficient of the cubic nonlinearity term in the NLSE, an dust particle. The DA waves have been observed in several
instability that takes place in the transverse directions is usuaboratory experimentgl1-13. On the other hand, in the
ally called self-focusing, while that in the longitudinal direc- dust-ion-acoustic wavéDIAW ), which is an extension of the
tion is referred to as the modulational instability. Even whenusual IAW, the pressure of the inertialess electrons provides
a modulation of the wave mode takes place in a directiorthe restoring force, whereas the inertia mainly comes from
obligue to the direction of the carrier wave propagation, thethe ion mass. The phase velocity of the DIAW is propor-
instability can still be called a modulational instabil[t§]. tional t0 wyikpe=(ZiNig/Neo) %5, Where wy; is the ion

Most of the theoretical efforts to investigate the modula-plasma frequency)p, is the electron Debye lengt, is
tional instability of ion-acoustic wavlAW) are focused on the unperturbed number density of the particle sperigs
a two-component plasma whose constituents are singlgqualse for the electrons andfor the iong, Z; is the charge
charged positive ions and electrons. Earlier, Kako and Hasestate of ionscs=(kgT./m;)¥? is the ion-acoustic velocity,
gawa [6] studied the modulational instability of an IAW andm; is the mass of an ion. The DIAW, whose phase ve-
when the modulation takes place oblique to the propagatiofocity is somewhat larger than that of the usual IAW in an
direction of the carrier wave. The modulational instability of electron-ion plasma when the dust grains are absent, is also
ion-acoustic waves has also been studied by Chhabra amdbserved in a laboratory experimdnt4]. A critical review
Sharma[7] in a plasma consisting of two-ion species with of wave phenomena in dusty plasmas is presented recently
singly ionized positive ions. Mishrat al. [8] have recently by Verhees{15].
studied the modulational instability of obliquely modulated In the present paper, we present an investigation of the
ion-acoustic waves in a collisionless plasma consisting ofmodulational instability of the DAW9] and the DIAW[10],
two-ion species with different masses, concentrations, andshen the modulation on the amplitude of the carrier wave
charge states. In that analysis, the ion species were taken tkes place oblique to the direction of the pump carrier wave
cold. propagation.

However, when an electron-ion plasma contains ex- The manuscript is organized in the following fashion. In
tremely massive, micrometer-size charged dust grains, thei®ec. I, we present the relevant nonlinear equations for DA
appears the possibility of new normal modé€s10]. The and DIA waves. By introducing the two-time and space
latter include the dust-acoustitDA) and the dust-ion- scales and the reductive perturbation method, we then derive
acoustic(DIA) waves. The dust-acoustic wa@AW) [9]is  the NLSE governing the dynamics of obliquely modulated
an extremely low phase velocit§in comparison with the DA and DIA waves in Sec. lll. In Sec. IV, we derive a
electron and ion thermal velocitierormal mode of a three- nonlinear dispersion relation for the amplitude modulation
component dusty plasma comprising electrons, ions and exand we discuss the possible two types of solutions of the

resulting NLSE. For the oblique direction with respect to the

pump carrier wave propagation, it is found that the DA and

*Permanent address: Department of Physics, Jahangirnagar UMMA waves are modulationally unstable. Section V contains
versity, Savar, Dhaka 1342, Bangladesh. a brief summary of our investigation.
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Il. MATHEMATICAL FORMALISM oN
To study the oblique modulation of DA and DIA waves in aT T Vx-(NV)=0, ©
a dusty plasma, we consider a two-dimensioi2&)) geom-
etry. For simplicity, the plasma is assumed to be unmagne- v
tized and the wave is assumed to propagate inxgnglane E’LV'VXVZVX@’ (10
with wave vectork= (k cos, ksind), wherek is the magni-
tude of the wave vector andllis the angle made by the wave (V2—1)®+ ad?=B(N-1), (11)

vector k with the positivex direction. We assume that the
wave modulation takes place along theirection. In a dusty \vhere the parameters and 8 are given by
plasma, the dust grains are very much heaviey/(m,
E)zm_lﬂzf-_::_e@+ }l,\,l ZiTe
i

~10"?—10'% compared to the ordinary ions and electrons. ( 1 )[ 5

The dusty plasma is composed of three species, namely, th&=

. . . 27471\ i) neg Neo S 22Z4Ty
cold dust particles, usually considered to be negatively (12)
charged, and the electrons and positive ions. We consider
two slightly different models for the two types of wave WIN2 (702 na T
modes, namely, the DA and DIA waves. — Pd®D _[Zd) [ 90 (13)
B 2 Z T
C4 i Nigle

CASE I: Dust-acoustic wave ) ]
and wpq= (4mZ5e’n40/My) 2 is the dust plasma frequency.

Here, we assume that the dust component of the dus% deriving expression§l2) and (13), we have assumed,

plasma is cold and inertial, whereas both the positive ion
and the electrons are hot, isothermal, and Boltzmann distriqa
uted. For the propagation of a DA wave mode,K) in the

dusty plasma, we consider the following set of equations:

ave also expanded the exponentials in E§sand(4) un-
der the assumption thaip/kgT,, Zied/kgTi<1, and have
retained terms up t®? so as to include the second harmonic

ang effect.
W_FV. (ndvd)=0, (1)
CASE II: Dust-ion-acoustic wave
%-{- v —EV 5 For the DIAW, we assume that the ion and dust compo-
ot Uy VU= my . 2 nents are cold inertial fluid, whereas the electrons are iner-
tialess hot isothermal fluid and are Boltzmann distributed.
Ne=Ngp EXP(ep/kpTe), (3)  Thus, the model equations in this case are
=n. —7 ) an;
N =njo exp( — Ziedp/kgT;), (4) a_t'+v.(nivi):0, (14)
V2p=4me(Ne+Zgng—Z;n;), (5)
. _ . . . av; Zie
and in equilibrium, the following charge neutrality condition a_t+vi'vvi: - WVd), (15
i
Neo+ZgNgo=ZiNio, (6)
Ny
is fulfilled; wheren; (j=e,i,d) is the number density of —i TV (ngvy) =0, (16)
different plasma species with, being their equilibrium val-
ues when there is no any plasma perturbatigns the dust- vy Z4e

fluid velocity, ¢ is the plasma perturbation potentizl(Z) — tvy- Vog=—Vo, a7

is the charge state of iorfdust particlel e is the magnitude at Mg

of the electronic chargf,.(T;) is the electroriion) tempera-

ture, andmy is the mass of a dust particle in the plasma. Ne=nNeo €XP(€P/KpTe), (18)
It is convenient to normalize different quantities in Egs.

(1)—(6). We introduce the following normalizationst and
=(Ap/cg)T,  X=NpX, vg=cC4V, nNg=ngN, ¢ 2, _ .
= (ke To/Z4e) D, where Vep=4me(n+2Zyng—2Z;n;). (19
No2= )\ 224 )2 @) However, as has been shown ear|i#], the effects of in-
b De = 7Di cluding the equations of motion of the massive dust compo-
and nent of the dusty plasma introduce a very small correction to
the physics of the dispersion relation of the DIAW, we can
)\Dj:(kBTJ/4ij2njo)l/2, (8) then safely assume that the dust particles are immobile. The

overall charge neutrality conditiamyy+ Zy4ngg=Z;n;q is also
ge=e for electrons andyj;=Z;e for ions; \p; is the Debye fulfilled here.

T; andn;o>ngg for the usual dusty plasma parameters. We

length for specieg. After this normalization, Eqs(1)—(6) We now normalize the equations here in a slightly differ-

take the following forms: ent way. We use the normalizations=(\pe/Cs)T, X
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=ApeX, Uj=CsV, Ni=njoN, ¢=(KgTe/Z;e)D. After these and
normalizations, Eq9.14)—(19) take the following forms:

2 2
J
oN Vi—Vi+2e +e2—. 31
—7+Vx- (\V)=0, (20) XOUXTTEAXaE T g2 Y
oV Substituting the expression25—(31) into Egs. (9)—(11),
ﬁ+\/.VX\/: —Vy®, (21) we obtain thenth-order reduced equations as follows:
NV avigt aNi"?)
(V= 1)@ —a®?=B(1-N), (22) — il N +il k- V(M=) ;g + ';g +—
-
where now the parametees and 8 are different from the w w
previous case and are given by n E 2 i k-Vfr:rn,)Nf?,)
=1 |'=-
a=1/z;, 23) T
d 1)
and + '21 er a—g(vz[‘iﬂ)x N =0, (32
n'= =—0o0
=7%ni0/Ng. 24
:8 i'lio’'e0 ( ) ,;'Vl(”*l) Aa(pl(”*l) 0\/'(”72)
g —il V" =il kd{M =\ —X +
11l. DERIVATION OF THE NONLINEAR SCHRO DINGER a¢ 74 ar
EQUATION o o
CASE I: Dust-acoustic wave + > >l ’k-VfiTrn/)Vf?,)
=11 ==
In order to investigate the modulational instability of ob- " )
lique modulations on DA and DIA waves in the dusty > (n_n,_l)avl([‘)
plasma, we assume that the perturbed quantities of all orders +> 2 Vi-imx (9—§=0, (33
depend onX and T through the wave amplitude and the n'=1l'=-=

phase factor of the monochromatic plane wave, andyon
through the phase factor on[]. To derive the nonlinear
Schralinger equation, we employ the standard reductive per-
turbation techniqué4]. We introduce the following stretched

and

-1 2 -2
oY FPoi"?

—(1+12k2) DM — BN(™ + 2ilk

variables{ and 7 such that a a2
{=€e(X—\T), (25 o o ’ ,
+> 2 ad")el)=0. (34)
= €T, (26) n=11'=-=

wheree is a small parameter and is the group velocity of  For the first order f=1) equations, we obtain
the wave along th& direction. We then expand the variables

N, V, and® in terms of the expansion parametens —iloN{P+ilk-V{Y=0, (35
NX,T) =1+ " 3 NM(£7) exlil (k-X—wT)], —iloV{V—ilk®{=0, (36)
n=1 |=—ow
27 and

. . — 212 (L _ pN(D =
VX T@XTD]= 3 & 3 V(57,9747 (L+IAC) ™= AN =0. 37
The equations fot=1 give rise to the following dispersion

xexplil (k-X=wT)], 28 elation for the DAW:

whereN, V and® satisfy the reality conditiors("=A{"*
and the asterisk denotes complex conjugate. The operators z_ﬁ_kz 38
alat, Vy, andVi then take the following forms to account @ O 14K2 (38)
for the slow variation of the wave amplitude:

which agrees well with the standard dispersion relatign

iéi_e)\ihszi' 29 =pa\pk/(1+K°\3) of the DAW in an unmagnetized
ar T 9 T dusty plasma studied earlier by Rao, Shukla, and[ My if
we go back to the dimensional form by replacing
~ 0 ituti
Vs Vit X, (30) —(Ap/cy)w and k—Apk and substituting the value g8

al from Eq. (13) into Eq. (38).
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From Eqs(35)—(37), we can express the first-order quan-

tities in terms ofN{") as

k-ViY=wNPY, (39)
VY =%0036'N(1) , (40
Vi =TsinaNg (41)
o= we 2

To the second order, one obtains the second-order corre
tion to the quantities in Eq$39)—(42) in terms of a function
N{@(¢,7) andoN{P/az. Forl=1 in the second-order equa-

tions, the following compatibility condition is obtained:

_1((0

“cosp= 22 43
cos =K (43

It is to be noted here that as Taniy#] has shown, the
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o=

4
(%) [1—2aN?+k?+2 cogh]|NY|2.
(49

B2

Finally, substituting the above derived expressions into the
=1 component of the third-order part of the reduced equa-
tions, we obtain the following nonlinear Schiinger equa-
tion:

2

i22 1 p7 2 glaa=0 50
i— e Qlal“a=0, (50

for the slow evolution of the first-order amplitude of the
plasma perturbation potentid{V=a. In the above equa-
tion, The coefficientd® andQ are given by
P 1/ 1\ w\* 1
" Bl2w/l Kk

3
1+—w2)co§0

e (51

and

Q=Qo+Q2, (52

first-order quantities with zeroth harmonic can be taken to be

Z€ero.

1 1alw\?
NG = +?_§E<?> NN, (49)
1 lolow
k-VZ'=w| 1+ k2_§E(F) NUNY, (45
po—| LB Laje * NN (46)
2 2k2 3k2 k 1 1 -

. . . w
The second harmonic mode of the carrier wave is also
obtained in terms oN{"N{®. This comes from nonlinear
self-interaction. The component bf 2 for the second-order
(n=2) equations determine the second harmonic quantities

here
o[ k\?* w)\? w)\?
Q= pl] 18278l {1-ael5]

o) a2 (2] 2]

J’_
(53

=~

a

4 cog -
+4cos6 8

B+

and

o {slla)

(54)

The zeroth-harmonic mode also appears due to the selfL"® €xpressions for the parametersand 8 appearing in

interaction of the modulated carrier wave. Its expression can
not be determined completely within the second order an

Eqgs.(51)—(54) are given respectively by=2Z;T./2Z4T; and

#=2inaoTi/1Z7n;oTe and 6 is the angle between the direc-

we will have to consider the third-order equations. Thus, thdion of the pump carrier wave propagation and the direction
| =0 components of the third-order part of the reduced equa@f the propagation of the amplitude modulation. In Esp),
tions determine the following second-order quantities in theQo iS the contribution taQ due to the zeroth harmonic and

zeroth harmonic as follows:

_ 4
NBZEB_—?\Z% %) [1—2aB+k2+2 codd]|ND?,
(47
-1 1 1/ w)\®
v — _ =
k-V§ B_)\Zﬁ(wcos’-o){z,fg’%ﬁ k)

X (1—-2aB+k?) |IN{V|, (48)

Q, is the contribution due to the second harmonic wave,
respectively.

CASE II: Dust-ion-acoustic wave

We can proceed in the similar way as we have just done
for case | for the DAW and arrive finally at the NLSE, Eq.
(50), with expressions for the coefficienB and Q, which
have exactly the same forms as to those given by Exfs.
and (52). However, the constants and 8 in this case are
different than for case | and are given ly=1/Z; and 8
=Znig/Neo.
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IV. STABILITY OF DUST-ACOUSTIC AND DUST-ION- <0 for a small value of the modulation wave number
ACOUSTIC WAVES WITH OBLIQUE MODULATION That is, the wave is modulationally unstable for long wave-
: : . length perturbations with wave numbét satisfying K2
In this section, we study the stability of DA and DIA <2|Q/P||ag|? and the maximum growth rate is obtained

waves when modulation on the wave amplitugmckej s : .
takes place in a direction, which is oblique to the direction offor K= IQ/P||a| V\zl'th __maximum growth rate
max= 1M(Q) max= | Ql|ag|*. It is interesting to note from Eq.

the pump carrier wave propagation. Instead of a stationar d ; o
solution, here we consider the dynamic solution of the 56) that the magnitude of the nonlinear frequency shift is

NLSE, derived in the previous section. Accordingly, we €dual o the maximum growth rated | = yimay. Instability
separate the amplitudginto two parts: sets in for perturbation wavelengit» A ., where the critical

threshold wavelength corresponding to the critical wave

a=[ag+ da(é)] exp—iAT), (55  number K= v2|PIQ||ag| is Ne=27IK¢,
. . . =2|P/Q[(/|ag]).
where{=K{—Q is the modulation phase witk(<k) and We note that for nearly parallel direction of modulation

) (<w) are respectively the wave number and the fre-(9~0) with respect to the pump carrier wave propagation
quency of the modulatiors, is the constantrea) amplitude  and withw#0, P is negative, however, whea is not very

of the pump carrier waveja(<ao) is the small amplitude |arge, Q is positive. This then indicates from E¢0) that
perturbation, and is a nonlinear frequency shift. After sub- ()2>0, that is, the wave packet is now modulationally stable.
stituting Eq.(55) into Eq. (50) and collecting terms of the This happens due to the nonlinear self-interaction originating
same order, we obtain from the zeroth harmonic modéometimes called slow
mode, which is referred to as the so-called ponderomotive
force. Additionally, when the modulation takes place along a

A=-Qlay|® (56) direction that is nearly perpendiculax=@0°) to the pump
and carrier wave propagation directiorR becomes positive,
while Q is always negative here, indicating from E&O)
J8a 2sa that 2>0, that is, in this case also, the wave packet is
i—+P +Qlag|?(sa+ sa*)=0, (57)  modulationally stable. This happens due to the second har-
o7 ag? monic self-interaction. On the other hand, for a modulational

. ) i instability, second harmonic mode is essential to enf@ce
where 5a* is the complex conjugate afa. Introducingda (4 take a negative value, since in the instability domain
=U+iV in Eq. (57), and separating the real and imaginary _
parts, one obtains the following two coupled equations: To this end, we now briefly discuss the possible localized

5 stationary solutions of the NLSE, E0). This also applies
ﬂ=Pﬂ+2Q|a 12U (58) to both DA and DIA waves. First we note that, since the
ar 2 0 wave packet can be unstable as well as stable in different
conditions ford andw, P andQ can both be negative or they
and can have different signs, there are accordingly two types of
stationary solutions of the NLSE. For the unstable wave
aJ Y packet @ and Q have same signit can be shown that the
or a_gz' (59) DAW or DIAW propagates as an envelope soliton. On the
other hand, for stable wave packd&® énd Q have different
Let us now assume that the amplitude perturbafiarvaries ~ Sign9, the wave can propagate in the form of an envelope
as~exdi(K{—Q7)], we then obtain from Eq¢58) and(59),  hole or an envelope sho¢k6]. To obtain the profiles in both
the following nonlinear dispersion relation for the amplitudethe cases, we led({, )= p(¢,7) exdio(¢,7)], wherep and

modulation of the DA or DIA wave modes: o are two real variables. Substituting this in the NLSE, Eq.
(50), and separating the real and imaginary parts, we solve
0%=PK2(PK?-2Q|ag|?), (60)  for p ando in a straightforward mannéi6]. When bothP

) o ~and Q have the same sigmodulationally unstable waye
whereP and Q are respectively the coefficients of the dis- \ye obtain the following envelope soliton:

persive and the nonlinear terms in the NLSE, Ef), and
are given respectively by Eqg51) and (52). Since «
=27,T/2Z4T;<1 is a very small quantity and also from Eq.
(38), w?>=B—(w/k)?><p, it can be shown from Eqg53) p(Z,)=p secV( A /3’9 p §) (61)
and(54) thatQ,>0 andQ,<0. It is also interesting to note ’ " 2|P|"™ )"

that one can find a wide domain of (@) whereQ<0. Simi-

larly, from the expression d?, Eq. (51), we observe thal

changes sign from negative to positive wherexceeds a wherep,, is a constant and represents the nonlinear maxi-
value cos[1+3w?%BIY% We note that this value af is 0°  mum amplitude. On the other hand, wherandQ have the
whenw=0 and 60° wherw= /8. Thus, we see that there is opposite sign§modulationally stable wayewe obtain

a wide domain where botR and Q take the negative sign.
—b2 L Q
1-b secﬁ( > P‘b{)

112
, (62

On the other hand, we see from the nonlinear dispersion
relation, Eq.(60), that when botP andQ are negative()? p({,7)=p1
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whereb?=(p2—p2)/pi<1, p, is a constant. The solution,
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waves in a homogeneous unmagnetized dusty plasma by ap-

Eq. (62), is referred to as an envelope hole sometimes calle@lying the standard reductive perturbation the@dy4]. To

a dark solitor{16], i.e., a soliton for the absent region of the
distribution |a|2. In other words, this solution corresponds

study the modulational instability of the DA and DIA waves,
we have considered amplitude modulations that propagate

formally to the accumulation of density in a region where theoblique to the direction of the pump carrier wave propaga-

wave intensity is very low. The parametein Eq. (62) de-
termines the depth of the modulation. Foe 1, we have

[P1 Q

(63)

p(gaT):pl tanr(

which is known as an envelope shddé.

It is important here to note that, besides the NLSE de
scribed above, the nonlinear dynamics of DA and DIA wave
can also be described by an another nonlinear equatio
called the KdV equatiof19,20, the solution of which is
usually called the KdV solitoisometimes called topological
soliton). The following points make clear the physical differ-
ences between the KdV soliton and the envelope solgon
lution of the NLSH:

(1) The KdV equation describes the evolution of non-
modulated DAW and DIAW in which the harmonic genera-
tion nonlinearities involving the divergence of fluxes, fluid
convection, as well as fully nonlinear electron and ion num
ber densities are in balance with the dispersion of the wave
The resulting stationary solutions of the KdV equation do no
have an envelope of waves; rather we obtain a bare pul
(either compressive or rarefactiveiith no fast oscillations
inside the packet.

(2) The NLSE governs the dynamics of a modulated wav
packet. Here, the DAW and DIAW are modulated by non
resonant disturbances whose frequency is much smaller th
the carrier frequencies. Here, the two time and space scal
are necessary and stretchings are different from those used
derive the KdV equation. The modulated amplitude varie
slowly (on the time and space scales of the nonresona
modulation$. The essential nonlinearities come from the

ponderomotive force that arises from the beating of the car

rier wave and the sidebands that are created on account
the nonlinear interactions between the carrier and the qua
stationary density modulations. The latter, in turn, are rein
forced by the ponderomotive force of the DAW and DIAW
envelopes. In the NLSE, the nonlinearities are in balanc

solutions of the NLSE have an envelope structure consistin
of the modulated DAW and DIAWwith rapidly varying
phasors and slowly varying envelopgsackets and large
scale quasistationary density perturbations that are created
the wave envelopes.

Accordingly, the stationary solutions of the KdV equation

S

e
with the wave group dispersion and the resulting stationan;2

tion. We have then derived a nonlinear dispersion relation
from the viewpoint of the dynamic solution of the NLSE. We
have found that a wide domain ird{w) exists where both
the coefficient®® and Q of the dispersive and the nonlinear
terms of the NLSE, take the negative sign. The nonlinear
dispersion relation then predicts that the modulations of DA
and DIA waves are unstable when they propagate oblique to
the direction of the pump carrier wave propagation. It thus
confirms the earlier analysis of Kako and Haseg@@jahat
modulational instability is a general property of a wave in a
nonlinear and dispersive medium when the modulation on
wave amplitude is allowed to take place in a direction that is
oblique to the direction of the pump carrier wave propaga-

ion.
" The above discussion about the nonlinear evolution of the
wave amplitude applies equally to both DA as well as DIA
waves. However, since the coefficiel®sand Q of the dis-
persive and the nonlinear terms of the NLSE are slightly
different (although the forms of the expressions are exactly
the samgdue to the difference in the parameterand 8 in
the two cases, the growth rates may not be exactly the same.
Additionally, the domain of the modulational instability in
the (,w) space may also be changed accordingly. Further-

ore, we observe from E@61) that the width of the enve-
ope soliton in the two cases may also be changed due to the
ossible difference inQ/P| ratio.

We have found that the stationary state of the modulation-

ally unstable DAW and DIAW can appear as an envelope
soliton [16—18. On the other hand, modulationally stable

OAW and DIAW can propagate either as an envelope hole

gﬁ)metimes called a dark soliton or an envelope shaék

It is to be noted here that besides the NLSE to describe
slow modulation of the wave envelopes, the nonlinear

e
Enamics of the acoustic waves in a dusty plasma can also be

rQescribed by a KdV equatiofi9,20. However, there are

some differences between these two descriptions. One im-
portant difference is that in the case of the KdV soliton, the

X?Iocity depends on the wave amplitude, leading to faster
Ts_peeds for larger amplitudes, but envelope solitons all move
at the same group velocity and therefore do not overtake
each other.

In the present investigation, we have assumed constant
ust charge. The inclusion of the dust charge perturbation
1,27 in our analysis would give rise to a damped NLSE.
he latter can still have an envelope soliton with a fa8].
Finally, it is stressed that the results of our investigation

ould be useful in understanding the features of modulated

A and DIA wave packets in a weakly coupled dusty
plasma.

and the NLSE are entirely different and the physics of the

two processes differ significantly.

V. DISCUSSIONS

We have derived a nonlinear Schinger equation for the
two-dimensional nonlinear propagation of DA and DIA
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