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Modulational instability of dust-acoustic and dust-ion-acoustic waves
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Using the standard reductive perturbation technique, a nonlinear Schro¨dinger equation is derived to study the
modulational instability of finite amplitude dust-acoustic~DA! and dust-ion-acoustic~DIA ! waves against
oblique perturbations~with respect to the propagation direction of the carrier waves! in an unmagnetized dusty
plasma. It is shown that both the DA and DIA waves are modulationally unstable. Possible stationary states of
the wave packets can appear as envelope solitons.@S1063-651X~98!06111-X#

PACS number~s!: 52.25.Vy, 52.35.Fp, 52.35.Qz, 52.35.Mw
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I. INTRODUCTION

In recent years, nonlinear wave propagation in plasm
has become one of the most important subjects of pla
physics@1–6#. In particular, it is now well established tha
the slow modulation of a monochromatic plane wave can
described by the so-called nonlinear Schro¨dinger equation
~NLSE!, which is familiar as the resultant equation of th
reductive perturbation theory~RPT! developed by Taniuti
and his collaborators@3,4#. For a medium with a positive
coefficient of the cubic nonlinearity term in the NLSE, a
instability that takes place in the transverse directions is u
ally called self-focusing, while that in the longitudinal dire
tion is referred to as the modulational instability. Even wh
a modulation of the wave mode takes place in a direct
oblique to the direction of the carrier wave propagation,
instability can still be called a modulational instability@6#.

Most of the theoretical efforts to investigate the modu
tional instability of ion-acoustic wave~IAW ! are focused on
a two-component plasma whose constituents are sin
charged positive ions and electrons. Earlier, Kako and Ha
gawa @6# studied the modulational instability of an IAW
when the modulation takes place oblique to the propaga
direction of the carrier wave. The modulational instability
ion-acoustic waves has also been studied by Chhabra
Sharma@7# in a plasma consisting of two-ion species wi
singly ionized positive ions. Mishraet al. @8# have recently
studied the modulational instability of obliquely modulat
ion-acoustic waves in a collisionless plasma consisting
two-ion species with different masses, concentrations,
charge states. In that analysis, the ion species were take
cold.

However, when an electron-ion plasma contains
tremely massive, micrometer-size charged dust grains, t
appears the possibility of new normal modes@9,10#. The
latter include the dust-acoustic~DA! and the dust-ion-
acoustic~DIA ! waves. The dust-acoustic wave~DAW! @9# is
an extremely low phase velocity~in comparison with the
electron and ion thermal velocities! normal mode of a three
component dusty plasma comprising electrons, ions and

*Permanent address: Department of Physics, Jahangirnagar
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tremely massive micrometer-size charged dust grains. In
DAW potential, both the electrons and ions are Boltzma
distributed, whereas the charged dust particles are iner
Thus, in the DAW, the pressures of the electrons and i
provide the restoring force, whereas the inertia comes fr
the dust mass. The phase velocity of the DAW scales
vpdlD[cd , wherevpd is the dust-plasma frequency,lD is
the effective Debye length of the dusty plasma,cd
5(kBTe /md)1/2 is the DA velocity,kB is the Boltzmann con-
stant,Te is the electron temperature, andmd is the mass of a
dust particle. The DA waves have been observed in sev
laboratory experiments@11–13#. On the other hand, in the
dust-ion-acoustic wave~DIAW !, which is an extension of the
usual IAW, the pressure of the inertialess electrons provi
the restoring force, whereas the inertia mainly comes fr
the ion mass. The phase velocity of the DIAW is propo
tional to vpilDe[(Zini0 /ne0)1/2cs , where vpi is the ion
plasma frequency,lDe is the electron Debye length,nj 0 is
the unperturbed number density of the particle speciesj ( j
equalse for the electrons andi for the ions!, Zi is the charge
state of ions,cs5(kBTe /mi)

1/2 is the ion-acoustic velocity,
andmi is the mass of an ion. The DIAW, whose phase v
locity is somewhat larger than that of the usual IAW in
electron-ion plasma when the dust grains are absent, is
observed in a laboratory experiment@14#. A critical review
of wave phenomena in dusty plasmas is presented rece
by Verheest@15#.

In the present paper, we present an investigation of
modulational instability of the DAW@9# and the DIAW@10#,
when the modulation on the amplitude of the carrier wa
takes place oblique to the direction of the pump carrier wa
propagation.

The manuscript is organized in the following fashion.
Sec. II, we present the relevant nonlinear equations for
and DIA waves. By introducing the two-time and spa
scales and the reductive perturbation method, we then de
the NLSE governing the dynamics of obliquely modulat
DA and DIA waves in Sec. III. In Sec. IV, we derive
nonlinear dispersion relation for the amplitude modulati
and we discuss the possible two types of solutions of
resulting NLSE. For the oblique direction with respect to t
pump carrier wave propagation, it is found that the DA a
DIA waves are modulationally unstable. Section V conta
a brief summary of our investigation.
ni-
6517 © 1998 The American Physical Society
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II. MATHEMATICAL FORMALISM

To study the oblique modulation of DA and DIA waves
a dusty plasma, we consider a two-dimensional~2D! geom-
etry. For simplicity, the plasma is assumed to be unmag
tized and the wave is assumed to propagate in thexyplane
with wave vectork[(k cosu, ksinu), wherek is the magni-
tude of the wave vector andu is the angle made by the wav
vector k with the positivex direction. We assume that th
wave modulation takes place along thex direction. In a dusty
plasma, the dust grains are very much heavier (md /mp
;101221015) compared to the ordinary ions and electron
The dusty plasma is composed of three species, namely
cold dust particles, usually considered to be negativ
charged, and the electrons and positive ions. We cons
two slightly different models for the two types of wav
modes, namely, the DA and DIA waves.

CASE I: Dust-acoustic wave

Here, we assume that the dust component of the d
plasma is cold and inertial, whereas both the positive i
and the electrons are hot, isothermal, and Boltzmann dis
uted. For the propagation of a DA wave mode (v,k) in the
dusty plasma, we consider the following set of equations

]nd

]t
1¹•~ndvd!50, ~1!

]vd

]t
1vd•¹vd5

Zde

md
¹f, ~2!

ne5ne0 exp~ef/kBTe!, ~3!

ni5ni0 exp~2Zief/kBTi !, ~4!

¹2f54pe~ne1Zdnd2Zini !, ~5!

and in equilibrium, the following charge neutrality conditio

ne01Zdnd05Zini0 , ~6!

is fulfilled; where nj ( j 5e,i ,d) is the number density o
different plasma species withnj 0 being their equilibrium val-
ues when there is no any plasma perturbation,vd is the dust-
fluid velocity, f is the plasma perturbation potential;Zi(Zd)
is the charge state of ions~dust particles!, e is the magnitude
of the electronic charge,Te(Ti) is the electron~ion! tempera-
ture, andmd is the mass of a dust particle in the plasma.

It is convenient to normalize different quantities in Eq
~1!–~6!. We introduce the following normalizations:t
5(lD /cd)T, x5lDX, vd5cdV, nd5nd0N, f
5(kBTe /Zde)F, where

lD
225lDe

221lDi
22 , ~7!

and

lD j5~kBTj /4pqj
2nj 0!1/2, ~8!

qe5e for electrons andqi5Zie for ions; lD j is the Debye
length for speciesj . After this normalization, Eqs.~1!–~6!
take the following forms:
e-

.
he
ly
er

ty
s
b-

.

]N

]T
1¹X•~NV!50, ~9!

]V

]T
1V•¹XV5¹XF, ~10!

~¹X
221!F1aF25b~N21!, ~11!

where the parametersa andb are given by

a5S 1

2Zd
D FZi

3S Te

Ti
D 2 ni0

ne0
21GFZi

2 Te

Ti

ni0

ne0
11G21

.
1

2

ZiTe

ZdTi
,

~12!

b5
vpd

2 lD
2

cd
2

.S Zd

Zi
D 2S nd0Ti

ni0Te
D , ~13!

andvpd5(4pZd
2e2nd0 /md)1/2 is the dust plasma frequency

In deriving expressions~12! and ~13!, we have assumedTe
.Ti andni0.ne0 for the usual dusty plasma parameters. W
have also expanded the exponentials in Eqs.~3! and ~4! un-
der the assumption thatef/kBTe , Zief/kBTi!1, and have
retained terms up toF2 so as to include the second harmon
effect.

CASE II: Dust-ion-acoustic wave

For the DIAW, we assume that the ion and dust comp
nents are cold inertial fluid, whereas the electrons are in
tialess hot isothermal fluid and are Boltzmann distribut
Thus, the model equations in this case are

]ni

]t
1¹•~nivi !50, ~14!

]vi

]t
1vi•¹vi52

Zie

mi
¹f, ~15!

]nd

]t
1¹•~ndvd!50, ~16!

]vd

]t
1vd•¹vd5

Zde

md
¹f, ~17!

ne5ne0 exp~ef/kBTe!, ~18!

and

¹2f54pe~ne1Zdnd2Zini !. ~19!

However, as has been shown earlier@10#, the effects of in-
cluding the equations of motion of the massive dust com
nent of the dusty plasma introduce a very small correction
the physics of the dispersion relation of the DIAW, we c
then safely assume that the dust particles are immobile.
overall charge neutrality conditionne01Zdnd05Zini0 is also
fulfilled here.

We now normalize the equations here in a slightly diffe
ent way. We use the normalizationst5(lDe /cs)T, x
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5lDeX, vi5csV, ni5ni0N, f5(kBTe /Zie)F. After these
normalizations, Eqs.~14!–~19! take the following forms:

]N

]T
1¹X•~NV!50, ~20!

]V

]T
1V•¹XV52¹XF, ~21!

~¹X
221!F2aF25b~12N!, ~22!

where now the parametersa and b are different from the
previous case and are given by

a51/Zi , ~23!

and

b5Zi
2ni0 /ne0 . ~24!

III. DERIVATION OF THE NONLINEAR SCHRO ¨ DINGER
EQUATION

CASE I: Dust-acoustic wave

In order to investigate the modulational instability of o
lique modulations on DA and DIA waves in the dus
plasma, we assume that the perturbed quantities of all or
depend onX and T through the wave amplitude and th
phase factor of the monochromatic plane wave, and oY
through the phase factor only@6#. To derive the nonlinear
Schrödinger equation, we employ the standard reductive p
turbation technique@4#. We introduce the following stretche
variablesz andt such that

z5e~X2lT!, ~25!

t5e2T, ~26!

wheree is a small parameter andl is the group velocity of
the wave along theX direction. We then expand the variable
N, V, andF in terms of the expansion parametere as

N~X,T!511 (
n51

`

en (
l 52`

`

Nl
~n!~z,t! exp@ i l ~k•X2vT!#,

~27!

@V~X,T!,F~X,T!#5 (
n51

`

en (
l 52`

`

@Vl
~n!~z,t!,F l

~n!~z,t!#

3exp@ i l ~k•X2vT!#, ~28!

whereN, V andF satisfy the reality conditionA2 l
(n)[Al

(n)*
and the asterisk denotes complex conjugate. The opera
]/]t, ¹X , and¹X

2 then take the following forms to accoun
for the slow variation of the wave amplitude:

]

]T
→

]

]T
2el

]

]z
1e2

]

]t
, ~29!

¹X→¹X1 x̂e
]

]z
, ~30!
rs

r-

ors

and

¹X
2→¹X

212e
]2

]X]z
1e2

]2

]z2
. ~31!

Substituting the expressions~25!–~31! into Eqs. ~9!–~11!,
we obtain thenth-order reduced equations as follows:

2 i l vNl
~n!1 i l k•Vl

~n!2l
]Nl

~n21!

]z
1

]VlX
~n21!

]z
1

]Nl
~n22!

]t

1 (
n851

`

(
l 852`

`

i l k•Vl 2 l 8
~n2n8!Nl 8

~n8!

1 (
n851

`

(
l 852`

`
]

]z
~V

~ l 2 l 8!X
~n2n821!Nl 8

~n8!
!50, ~32!

2 i l vVl
~n!2 i l kF l

~n!2l
]Vl

~n21!

]z
2 x̂

]F l
~n21!

]z
1

]Vl
~n22!

]t

1 (
n851

`

(
l 852`

`

i l 8k•Vl 2 l 8
~n2n8!Vl 8

~n8!

1 (
n851

`

(
l 852`

`

V
~ l 2 l 8!X
~n2n821!

]Vl 8
~n8!

]z
50, ~33!

and

2~11 l 2k2!F l
~n!2bNl

~n!12i lk X

]F l
~n21!

]z
1

]2F l
~n22!

]z2

1 (
n851

`

(
l 852`

`

aF l 2 l 8
~n2n8!F l 8

~n8!
50. ~34!

For the first order (n51) equations, we obtain

2 i l vNl
~1!1 i l k•Vl

~1!50, ~35!

2 i l vVl
~1!2 i l kF l

~1!50, ~36!

and

2~11 l 2k2!F l
~1!2bNl

~1!50. ~37!

The equations forl 51 give rise to the following dispersion
relation for the DAW:

v25
bk2

11k2
, ~38!

which agrees well with the standard dispersion relationv2

5vpd
2 lD

2 k2/(11k2lD
2 ) of the DAW in an unmagnetized

dusty plasma studied earlier by Rao, Shukla, and Yu@9#, if
we go back to the dimensional form by replacingv
→(lD /cd)v and k→lDk and substituting the value ofb
from Eq. ~13! into Eq. ~38!.
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From Eqs.~35!–~37!, we can express the first-order qua
tities in terms ofN1

(1) as

k•V1
~1!5vN1

~1! , ~39!

V1X
~1!5

v

k
cosuN1

~1! , ~40!

V1Y
~1!5

v

k
sinuN1

~1! , ~41!

F1
~1!52S v

k D 2

N1
~1! . ~42!

To the second order, one obtains the second-order co
tion to the quantities in Eqs.~39!–~42! in terms of a function
N1

(2)(z,t) and]N1
(1)/]z. For l 51 in the second-order equa

tions, the following compatibility condition is obtained:

l5
1

bS v

k D 3

cosu5
]v

]k
. ~43!

It is to be noted here that as Taniuti@4# has shown, the
first-order quantities with zeroth harmonic can be taken to
zero.

The second harmonic mode of the carrier wave is a
obtained in terms ofN1

(1)N1
(1) . This comes from nonlinea

self-interaction. The component ofl 52 for the second-orde
(n52) equations determine the second harmonic quanti

N2
~2!5F21

1

2k2
2

1

3

a

k2S v

k D 2GN1
~1!N1

~1! , ~44!

k•V2
~2!5vF11

1

2k2
2

1

3

a

k2S v

k D 2GN1
~1!N1

~1! , ~45!

F2
~2!5F2

1

2

b

k2
1

1

3

a

k2S v

k D 4GN1
~1!N1

~1! . ~46!

The zeroth-harmonic mode also appears due to the
interaction of the modulated carrier wave. Its expression c
not be determined completely within the second order
we will have to consider the third-order equations. Thus,
l 50 components of the third-order part of the reduced eq
tions determine the following second-order quantities in
zeroth harmonic as follows:

N0
~2!5

21

b2l2

1

bS v

k D 4

@122ab1k212 cos2u#uN1
~1!u2,

~47!

k•V0
~2!5

21

b2l2

1

b
~v cos2u!F2b21

1

bS v

k D 6

3~122ab1k2!G uN1
~1!u2, ~48!
c-

e

o

s

lf-
n-
d
e
a-
e

F0
~2!5

1

b2l2S v

k D 4

@122al21k212 cos2u#uN1
~1!u2.

~49!

Finally, substituting the above derived expressions into
l 51 component of the third-order part of the reduced eq
tions, we obtain the following nonlinear Schro¨dinger equa-
tion:

i
]a

]t
1P

]2a

]z2
1Quau2a50, ~50!

for the slow evolution of the first-order amplitude of th
plasma perturbation potentialF1

(1)[a. In the above equa-
tion, The coefficientsP andQ are given by

P5
1

bS 1

2v D S v

k D 4F12S 11
3

b
v2D cos2uG ~51!

and

Q5Q01Q2 , ~52!

where

Q05
v

2bS k

v D 4

~b2l2!21FbS v

k D 2H 124aS v

k D 2J
14 cos2uH b21S v

k D 4

22aS v

k D 6

1S a

b D 2S v

k D 12J G ,
~53!

and

Q252S 1

2v D S k

v D 4F4v21
3

2S v

k D 2

22aS v

k D 4

1
2

3

a2

b S v

k D 8G .
~54!

The expressions for the parametersa and b appearing in
Eqs.~51!–~54! are given respectively bya5ZiTe/2ZdTi and
b5Zd

2nd0Ti /Zi
2ni0Te and u is the angle between the direc

tion of the pump carrier wave propagation and the direct
of the propagation of the amplitude modulation. In Eq.~52!,
Q0 is the contribution toQ due to the zeroth harmonic an
Q2 is the contribution due to the second harmonic wa
respectively.

CASE II: Dust-ion-acoustic wave

We can proceed in the similar way as we have just do
for case I for the DAW and arrive finally at the NLSE, E
~50!, with expressions for the coefficientsP and Q, which
have exactly the same forms as to those given by Eqs.~51!
and ~52!. However, the constantsa and b in this case are
different than for case I and are given bya51/Zi and b
5Zi

2ni0 /ne0 .
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IV. STABILITY OF DUST-ACOUSTIC AND DUST-ION-
ACOUSTIC WAVES WITH OBLIQUE MODULATION

In this section, we study the stability of DA and DIA
waves when modulation on the wave amplitude~packet!
takes place in a direction, which is oblique to the direction
the pump carrier wave propagation. Instead of a station
solution, here we consider the dynamic solution of t
NLSE, derived in the previous section. Accordingly, w
separate the amplitudea into two parts:

a5@a01da~j!# exp~2 iDt!, ~55!

wherej5Kz2Vt is the modulation phase withK(!k) and
V (!v) are respectively the wave number and the f
quency of the modulation;a0 is the constant~real! amplitude
of the pump carrier wave,da(!a0) is the small amplitude
perturbation, andD is a nonlinear frequency shift. After sub
stituting Eq.~55! into Eq. ~50! and collecting terms of the
same order, we obtain

D52Qua0u2 ~56!

and

i
]da

]t
1P

]2da

]z2
1Qua0u2~da1da* !50, ~57!

whereda* is the complex conjugate ofda. Introducingda
5U1 iV in Eq. ~57!, and separating the real and imagina
parts, one obtains the following two coupled equations:

]V

]t
5P

]2U

]z2
12Qua0u2U ~58!

and

]U

]t
52P

]2V

]z2
. ~59!

Let us now assume that the amplitude perturbationda varies
as;exp@i(Kz2Vt)#, we then obtain from Eqs.~58! and~59!,
the following nonlinear dispersion relation for the amplitu
modulation of the DA or DIA wave modes:

V25PK2~PK222Qua0u2!, ~60!

whereP and Q are respectively the coefficients of the di
persive and the nonlinear terms in the NLSE, Eq.~50!, and
are given respectively by Eqs.~51! and ~52!. Since a
5ZiTe/2ZdTi!1 is a very small quantity and also from E
~38!, v25b2(v/k)2<b, it can be shown from Eqs.~53!
and~54! thatQ0.0 andQ2,0. It is also interesting to note
that one can find a wide domain of (u,v) whereQ,0. Simi-
larly, from the expression ofP, Eq. ~51!, we observe thatP
changes sign from negative to positive whenu exceeds a
value cos21@113v2/b#1/2. We note that this value ofu is 0°
whenv50 and 60° whenv5Ab. Thus, we see that there
a wide domain where bothP and Q take the negative sign
On the other hand, we see from the nonlinear dispers
relation, Eq.~60!, that when bothP andQ are negative,V2
f
ry
e

-

n

,0 for a small value of the modulation wave numberK.
That is, the wave is modulationally unstable for long wav
length perturbations with wave numberK satisfying K2

,2uQ/Puua0u2, and the maximum growth rate is obtaine
for K5AuQ/Puua0u with maximum growth rate
gmax5Im(V)max5uQuua0u2. It is interesting to note from Eq
~56! that the magnitude of the nonlinear frequency shift
equal to the maximum growth rateuDu5gmax. Instability
sets in for perturbation wavelengthl.lcr where the critical
threshold wavelength corresponding to the critical wa
number Kcr5A2uP/Quua0u is lcr52p/Kcr

5A2uP/Qu(p/ua0u).
We note that for nearly parallel direction of modulatio

(u'0) with respect to the pump carrier wave propagat
and withvÞ0, P is negative, however, whenv is not very
large, Q is positive. This then indicates from Eq.~60! that
V2.0, that is, the wave packet is now modulationally stab
This happens due to the nonlinear self-interaction originat
from the zeroth harmonic mode~sometimes called slow
mode!, which is referred to as the so-called ponderomot
force. Additionally, when the modulation takes place alon
direction that is nearly perpendicular ('90°) to the pump
carrier wave propagation direction,P becomes positive,
while Q is always negative here, indicating from Eq.~60!
that V2.0, that is, in this case also, the wave packet
modulationally stable. This happens due to the second
monic self-interaction. On the other hand, for a modulatio
instability, second harmonic mode is essential to enforceQ
to take a negative value, since in the instability domainP
,0.

To this end, we now briefly discuss the possible localiz
stationary solutions of the NLSE, Eq.~50!. This also applies
to both DA and DIA waves. First we note that, since t
wave packet can be unstable as well as stable in diffe
conditions foru andv, P andQ can both be negative or the
can have different signs, there are accordingly two types
stationary solutions of the NLSE. For the unstable wa
packet (P and Q have same sign! it can be shown that the
DAW or DIAW propagates as an envelope soliton. On t
other hand, for stable wave packet (P andQ have different
signs!, the wave can propagate in the form of an envelo
hole or an envelope shock@16#. To obtain the profiles in both
the cases, we leta(z,t)5r(z,t) exp@is(z,t)#, wherer and
s are two real variables. Substituting this in the NLSE, E
~50!, and separating the real and imaginary parts, we so
for r ands in a straightforward manner@16#. When bothP
and Q have the same sign~modulationally unstable wave!,
we obtain the following envelope soliton:

r~z,t!5rm sechSA1

2UQPUrmz D , ~61!

whererm is a constant and represents the nonlinear ma
mum amplitude. On the other hand, whenP andQ have the
opposite signs~modulationally stable wave!, we obtain

r~z,t!5r1F12b2sech2SAr1

2 UQPUbz D G1/2

, ~62!
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whereb25(r1
22rm

2 )/r1
2<1, r1 is a constant. The solution

Eq. ~62!, is referred to as an envelope hole sometimes ca
a dark soliton@16#, i.e., a soliton for the absent region of th
distribution uau2. In other words, this solution correspond
formally to the accumulation of density in a region where t
wave intensity is very low. The parameterb in Eq. ~62! de-
termines the depth of the modulation. Forb51, we have

r~z,t!5r1 tanhSAr1

2 UQPUbz D , ~63!

which is known as an envelope shock@16#.
It is important here to note that, besides the NLSE

scribed above, the nonlinear dynamics of DA and DIA wav
can also be described by an another nonlinear equa
called the KdV equation@19,20#, the solution of which is
usually called the KdV soliton~sometimes called topologica
soliton!. The following points make clear the physical diffe
ences between the KdV soliton and the envelope soliton~so-
lution of the NLSE!:

~1! The KdV equation describes the evolution of no
modulated DAW and DIAW in which the harmonic gener
tion nonlinearities involving the divergence of fluxes, flu
convection, as well as fully nonlinear electron and ion nu
ber densities are in balance with the dispersion of the wa
The resulting stationary solutions of the KdV equation do
have an envelope of waves; rather we obtain a bare p
~either compressive or rarefactive! with no fast oscillations
inside the packet.

~2! The NLSE governs the dynamics of a modulated wa
packet. Here, the DAW and DIAW are modulated by no
resonant disturbances whose frequency is much smaller
the carrier frequencies. Here, the two time and space sc
are necessary and stretchings are different from those us
derive the KdV equation. The modulated amplitude var
slowly ~on the time and space scales of the nonreson
modulations!. The essential nonlinearities come from t
ponderomotive force that arises from the beating of the c
rier wave and the sidebands that are created on accou
the nonlinear interactions between the carrier and the qu
stationary density modulations. The latter, in turn, are re
forced by the ponderomotive force of the DAW and DIAW
envelopes. In the NLSE, the nonlinearities are in bala
with the wave group dispersion and the resulting station
solutions of the NLSE have an envelope structure consis
of the modulated DAW and DIAW~with rapidly varying
phasors and slowly varying envelopes! packets and large
scale quasistationary density perturbations that are create
the wave envelopes.

Accordingly, the stationary solutions of the KdV equatio
and the NLSE are entirely different and the physics of
two processes differ significantly.

V. DISCUSSIONS

We have derived a nonlinear Schro¨dinger equation for the
two-dimensional nonlinear propagation of DA and DI
d

-
s
n,

-
s.
t
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e
-
an
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to

s
nt

r-
of

si-
-

e
y
g

by

e

waves in a homogeneous unmagnetized dusty plasma by
plying the standard reductive perturbation theory@3,4#. To
study the modulational instability of the DA and DIA wave
we have considered amplitude modulations that propag
oblique to the direction of the pump carrier wave propag
tion. We have then derived a nonlinear dispersion relat
from the viewpoint of the dynamic solution of the NLSE. W
have found that a wide domain in (u,v) exists where both
the coefficientsP andQ of the dispersive and the nonlinea
terms of the NLSE, take the negative sign. The nonlin
dispersion relation then predicts that the modulations of
and DIA waves are unstable when they propagate obliqu
the direction of the pump carrier wave propagation. It th
confirms the earlier analysis of Kako and Hasegawa@6# that
modulational instability is a general property of a wave in
nonlinear and dispersive medium when the modulation
wave amplitude is allowed to take place in a direction tha
oblique to the direction of the pump carrier wave propag
tion.

The above discussion about the nonlinear evolution of
wave amplitude applies equally to both DA as well as D
waves. However, since the coefficientsP and Q of the dis-
persive and the nonlinear terms of the NLSE are sligh
different ~although the forms of the expressions are exac
the same! due to the difference in the parametersa andb in
the two cases, the growth rates may not be exactly the sa
Additionally, the domain of the modulational instability i
the (u,v) space may also be changed accordingly. Furth
more, we observe from Eq.~61! that the width of the enve-
lope soliton in the two cases may also be changed due to
possible difference inuQ/Pu ratio.

We have found that the stationary state of the modulati
ally unstable DAW and DIAW can appear as an envelo
soliton @16–18#. On the other hand, modulationally stab
DAW and DIAW can propagate either as an envelope h
sometimes called a dark soliton or an envelope shock@16#.

It is to be noted here that besides the NLSE to desc
the slow modulation of the wave envelopes, the nonlin
dynamics of the acoustic waves in a dusty plasma can als
described by a KdV equation@19,20#. However, there are
some differences between these two descriptions. One
portant difference is that in the case of the KdV soliton, t
velocity depends on the wave amplitude, leading to fas
speeds for larger amplitudes, but envelope solitons all m
at the same group velocity and therefore do not overt
each other.

In the present investigation, we have assumed cons
dust charge. The inclusion of the dust charge perturba
@21,22# in our analysis would give rise to a damped NLS
The latter can still have an envelope soliton with a tail@18#.
Finally, it is stressed that the results of our investigati
should be useful in understanding the features of modula
DA and DIA wave packets in a weakly coupled dus
plasma.
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